初始化提交

This commit is contained in:
王立帮
2024-07-20 22:09:06 +08:00
commit c247dd07a6
6876 changed files with 2743096 additions and 0 deletions

View File

@@ -0,0 +1,524 @@
/*!
* @file Adafruit_TCS34725_Soft.cpp
*
* @mainpage Driver for the TCS34725 digital color sensors.
*
* @section intro_sec Introduction
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
*
* @section author Author
*
* KTOWN (Adafruit Industries)
*
* @section license License
*
* BSD (see license.txt)
*
* @section HISTORY
*
* v1.0 - First release
*/
#ifdef __AVR
#include <avr/pgmspace.h>
#elif defined(ESP8266)
#include <pgmspace.h>
#endif
#include <math.h>
#include <stdlib.h>
#include <SoftwareWire.h>
#include "Adafruit_TCS34725_Soft.h"
/*!
* @brief Implements missing powf function
* @param x
* Base number
* @param y
* Exponent
* @return x raised to the power of y
*/
float powf(const float x, const float y) {
return (float)(pow((double)x, (double)y));
}
/*!
* @brief Writes a register and an 8 bit value over I2C
* @param reg
* @param value
*/
void Adafruit_TCS34725_Soft::write8(uint8_t reg, uint32_t value) {
_wire->beginTransmission(_i2caddr);
#if ARDUINO >= 100
_wire->write(TCS34725_COMMAND_BIT | reg);
_wire->write(value & 0xFF);
#else
_wire->send(TCS34725_COMMAND_BIT | reg);
_wire->send(value & 0xFF);
#endif
_wire->endTransmission();
}
/*!
* @brief Reads an 8 bit value over I2C
* @param reg
* @return value
*/
uint8_t Adafruit_TCS34725_Soft::read8(uint8_t reg) {
_wire->beginTransmission(_i2caddr);
#if ARDUINO >= 100
_wire->write(TCS34725_COMMAND_BIT | reg);
#else
_wire->send(TCS34725_COMMAND_BIT | reg);
#endif
_wire->endTransmission();
_wire->requestFrom(_i2caddr, (uint8_t)1);
#if ARDUINO >= 100
return _wire->read();
#else
return _wire->receive();
#endif
}
/*!
* @brief Reads a 16 bit values over I2C
* @param reg
* @return value
*/
uint16_t Adafruit_TCS34725_Soft::read16(uint8_t reg) {
uint16_t x;
uint16_t t;
_wire->beginTransmission(_i2caddr);
#if ARDUINO >= 100
_wire->write(TCS34725_COMMAND_BIT | reg);
#else
_wire->send(TCS34725_COMMAND_BIT | reg);
#endif
_wire->endTransmission();
_wire->requestFrom(_i2caddr, (uint8_t)2);
#if ARDUINO >= 100
t = _wire->read();
x = _wire->read();
#else
t = _wire->receive();
x = _wire->receive();
#endif
x <<= 8;
x |= t;
return x;
}
/*!
* @brief Enables the device
*/
void Adafruit_TCS34725_Soft::enable() {
write8(TCS34725_ENABLE, TCS34725_ENABLE_PON);
delay(3);
write8(TCS34725_ENABLE, TCS34725_ENABLE_PON | TCS34725_ENABLE_AEN);
/* Set a delay for the integration time.
This is only necessary in the case where enabling and then
immediately trying to read values back. This is because setting
AEN triggers an automatic integration, so if a read RGBC is
performed too quickly, the data is not yet valid and all 0's are
returned */
switch (_tcs34725IntegrationTime) {
case TCS34725_INTEGRATIONTIME_2_4MS:
delay(3);
break;
case TCS34725_INTEGRATIONTIME_24MS:
delay(24);
break;
case TCS34725_INTEGRATIONTIME_50MS:
delay(50);
break;
case TCS34725_INTEGRATIONTIME_101MS:
delay(101);
break;
case TCS34725_INTEGRATIONTIME_154MS:
delay(154);
break;
case TCS34725_INTEGRATIONTIME_700MS:
delay(700);
break;
}
}
/*!
* @brief Disables the device (putting it in lower power sleep mode)
*/
void Adafruit_TCS34725_Soft::disable() {
/* Turn the device off to save power */
uint8_t reg = 0;
reg = read8(TCS34725_ENABLE);
write8(TCS34725_ENABLE, reg & ~(TCS34725_ENABLE_PON | TCS34725_ENABLE_AEN));
}
/*!
* @brief Constructor
* @param it
* Integration Time
* @param gain
* Gain
*/
Adafruit_TCS34725_Soft::Adafruit_TCS34725_Soft(tcs34725IntegrationTime_t it,
tcs34725Gain_t gain) {
_tcs34725Initialised = false;
_tcs34725IntegrationTime = it;
_tcs34725Gain = gain;
}
/*!
* @brief Initializes I2C and configures the sensor
* @param addr
* i2c address
* @param *theWire
* The Wire object
* @return True if initialization was successful, otherwise false.
*/
boolean Adafruit_TCS34725_Soft::begin(uint8_t addr, SoftwareWire *theWire) {
_i2caddr = addr;
_wire = theWire;
return init();
}
/*!
* @brief Part of begin
* @return True if initialization was successful, otherwise false.
*/
boolean Adafruit_TCS34725_Soft::init() {
_wire->begin();
/* Make sure we're actually connected */
uint8_t x = read8(TCS34725_ID);
if ((x != 0x44) && (x != 0x10)) {
return false;
}
_tcs34725Initialised = true;
/* Set default integration time and gain */
setIntegrationTime(_tcs34725IntegrationTime);
setGain(_tcs34725Gain);
/* Note: by default, the device is in power down mode on bootup */
enable();
return true;
}
/*!
* @brief Sets the integration time for the TC34725
* @param it
* Integration Time
*/
void Adafruit_TCS34725_Soft::setIntegrationTime(tcs34725IntegrationTime_t it) {
/* Update the timing register */
write8(TCS34725_ATIME, it);
/* Update value placeholders */
_tcs34725IntegrationTime = it;
}
/*!
* @brief Adjusts the gain on the TCS34725
* @param gain
* Gain (sensitivity to light)
*/
void Adafruit_TCS34725_Soft::setGain(tcs34725Gain_t gain) {
/* Update the timing register */
write8(TCS34725_CONTROL, gain);
/* Update value placeholders */
_tcs34725Gain = gain;
}
/*!
* @brief Reads the raw red, green, blue and clear channel values
* @param *r
* Red value
* @param *g
* Green value
* @param *b
* Blue value
* @param *c
* Clear channel value
*/
void Adafruit_TCS34725_Soft::getRawData(uint16_t *r, uint16_t *g, uint16_t *b,
uint16_t *c) {
*c = read16(TCS34725_CDATAL);
*r = read16(TCS34725_RDATAL);
*g = read16(TCS34725_GDATAL);
*b = read16(TCS34725_BDATAL);
/* Set a delay for the integration time */
switch (_tcs34725IntegrationTime) {
case TCS34725_INTEGRATIONTIME_2_4MS:
delay(3);
break;
case TCS34725_INTEGRATIONTIME_24MS:
delay(24);
break;
case TCS34725_INTEGRATIONTIME_50MS:
delay(50);
break;
case TCS34725_INTEGRATIONTIME_101MS:
delay(101);
break;
case TCS34725_INTEGRATIONTIME_154MS:
delay(154);
break;
case TCS34725_INTEGRATIONTIME_700MS:
delay(700);
break;
}
}
/*!
* @brief Reads the raw red, green, blue and clear channel values in
* one-shot mode (e.g., wakes from sleep, takes measurement, enters
* sleep)
* @param *r
* Red value
* @param *g
* Green value
* @param *b
* Blue value
* @param *c
* Clear channel value
*/
void Adafruit_TCS34725_Soft::getRawDataOneShot(uint16_t *r, uint16_t *g, uint16_t *b,
uint16_t *c) {
enable();
getRawData(r, g, b, c);
disable();
}
/*!
* @brief Read the RGB color detected by the sensor.
* @param *r
* Red value normalized to 0-255
* @param *g
* Green value normalized to 0-255
* @param *b
* Blue value normalized to 0-255
*/
void Adafruit_TCS34725_Soft::getRGB(float *r, float *g, float *b) {
uint16_t red, green, blue, clear;
getRawData(&red, &green, &blue, &clear);
uint32_t sum = clear;
// Avoid divide by zero errors ... if clear = 0 return black
if (clear == 0) {
*r = *g = *b = 0;
return;
}
*r = (float)red / sum * 255.0;
*g = (float)green / sum * 255.0;
*b = (float)blue / sum * 255.0;
}
/*!
* @brief Converts the raw R/G/B values to color temperature in degrees Kelvin
* @param r
* Red value
* @param g
* Green value
* @param b
* Blue value
* @return Color temperature in degrees Kelvin
*/
uint16_t Adafruit_TCS34725_Soft::calculateColorTemperature(uint16_t r, uint16_t g,
uint16_t b) {
float X, Y, Z; /* RGB to XYZ correlation */
float xc, yc; /* Chromaticity co-ordinates */
float n; /* McCamy's formula */
float cct;
if (r == 0 && g == 0 && b == 0) {
return 0;
}
/* 1. Map RGB values to their XYZ counterparts. */
/* Based on 6500K fluorescent, 3000K fluorescent */
/* and 60W incandescent values for a wide range. */
/* Note: Y = Illuminance or lux */
X = (-0.14282F * r) + (1.54924F * g) + (-0.95641F * b);
Y = (-0.32466F * r) + (1.57837F * g) + (-0.73191F * b);
Z = (-0.68202F * r) + (0.77073F * g) + (0.56332F * b);
/* 2. Calculate the chromaticity co-ordinates */
xc = (X) / (X + Y + Z);
yc = (Y) / (X + Y + Z);
/* 3. Use McCamy's formula to determine the CCT */
n = (xc - 0.3320F) / (0.1858F - yc);
/* Calculate the final CCT */
cct =
(449.0F * powf(n, 3)) + (3525.0F * powf(n, 2)) + (6823.3F * n) + 5520.33F;
/* Return the results in degrees Kelvin */
return (uint16_t)cct;
}
/*!
* @brief Converts the raw R/G/B values to color temperature in degrees
* Kelvin using the algorithm described in DN40 from Taos (now AMS).
* @param r
* Red value
* @param g
* Green value
* @param b
* Blue value
* @param c
* Clear channel value
* @return Color temperature in degrees Kelvin
*/
uint16_t Adafruit_TCS34725_Soft::calculateColorTemperature_dn40(uint16_t r,
uint16_t g,
uint16_t b,
uint16_t c) {
uint16_t r2, b2; /* RGB values minus IR component */
uint16_t sat; /* Digital saturation level */
uint16_t ir; /* Inferred IR content */
if (c == 0) {
return 0;
}
/* Analog/Digital saturation:
*
* (a) As light becomes brighter, the clear channel will tend to
* saturate first since R+G+B is approximately equal to C.
* (b) The TCS34725 accumulates 1024 counts per 2.4ms of integration
* time, up to a maximum values of 65535. This means analog
* saturation can occur up to an integration time of 153.6ms
* (64*2.4ms=153.6ms).
* (c) If the integration time is > 153.6ms, digital saturation will
* occur before analog saturation. Digital saturation occurs when
* the count reaches 65535.
*/
if ((256 - _tcs34725IntegrationTime) > 63) {
/* Track digital saturation */
sat = 65535;
} else {
/* Track analog saturation */
sat = 1024 * (256 - _tcs34725IntegrationTime);
}
/* Ripple rejection:
*
* (a) An integration time of 50ms or multiples of 50ms are required to
* reject both 50Hz and 60Hz ripple.
* (b) If an integration time faster than 50ms is required, you may need
* to average a number of samples over a 50ms period to reject ripple
* from fluorescent and incandescent light sources.
*
* Ripple saturation notes:
*
* (a) If there is ripple in the received signal, the value read from C
* will be less than the max, but still have some effects of being
* saturated. This means that you can be below the 'sat' value, but
* still be saturating. At integration times >150ms this can be
* ignored, but <= 150ms you should calculate the 75% saturation
* level to avoid this problem.
*/
if ((256 - _tcs34725IntegrationTime) <= 63) {
/* Adjust sat to 75% to avoid analog saturation if atime < 153.6ms */
sat -= sat / 4;
}
/* Check for saturation and mark the sample as invalid if true */
if (c >= sat) {
return 0;
}
/* AMS RGB sensors have no IR channel, so the IR content must be */
/* calculated indirectly. */
ir = (r + g + b > c) ? (r + g + b - c) / 2 : 0;
/* Remove the IR component from the raw RGB values */
r2 = r - ir;
b2 = b - ir;
if (r2 == 0) {
return 0;
}
/* A simple method of measuring color temp is to use the ratio of blue */
/* to red light, taking IR cancellation into account. */
uint16_t cct = (3810 * (uint32_t)b2) / /** Color temp coefficient. */
(uint32_t)r2 +
1391; /** Color temp offset. */
return cct;
}
/*!
* @brief Converts the raw R/G/B values to lux
* @param r
* Red value
* @param g
* Green value
* @param b
* Blue value
* @return Lux value
*/
uint16_t Adafruit_TCS34725_Soft::calculateLux(uint16_t r, uint16_t g, uint16_t b) {
float illuminance;
/* This only uses RGB ... how can we integrate clear or calculate lux */
/* based exclusively on clear since this might be more reliable? */
illuminance = (-0.32466F * r) + (1.57837F * g) + (-0.73191F * b);
return (uint16_t)illuminance;
}
/*!
* @brief Sets inerrupt for TCS34725
* @param i
* Interrupt (True/False)
*/
void Adafruit_TCS34725_Soft::setInterrupt(boolean i) {
uint8_t r = read8(TCS34725_ENABLE);
if (i) {
r |= TCS34725_ENABLE_AIEN;
} else {
r &= ~TCS34725_ENABLE_AIEN;
}
write8(TCS34725_ENABLE, r);
}
/*!
* @brief Clears inerrupt for TCS34725
*/
void Adafruit_TCS34725_Soft::clearInterrupt() {
_wire->beginTransmission(_i2caddr);
#if ARDUINO >= 100
_wire->write(TCS34725_COMMAND_BIT | 0x66);
#else
_wire->send(TCS34725_COMMAND_BIT | 0x66);
#endif
_wire->endTransmission();
}
/*!
* @brief Sets inerrupt limits
* @param low
* Low limit
* @param high
* High limit
*/
void Adafruit_TCS34725_Soft::setIntLimits(uint16_t low, uint16_t high) {
write8(0x04, low & 0xFF);
write8(0x05, low >> 8);
write8(0x06, high & 0xFF);
write8(0x07, high >> 8);
}

View File

@@ -0,0 +1,202 @@
/*!
* @file Adafruit_TCS34725_Soft.h
*
* Software License Agreement (BSD License)
*
* Copyright (c) 2013, Adafruit Industries
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
#ifndef _TCS34725_H_
#define _TCS34725_H_
#if ARDUINO >= 100
#include <Arduino.h>
#else
#include <WProgram.h>
#endif
#include <SoftwareWire.h>
#define TCS34725_ADDRESS (0x29) /**< I2C address **/
#define TCS34725_COMMAND_BIT (0x80) /**< Command bit **/
#define TCS34725_ENABLE (0x00) /**< Interrupt Enable register */
#define TCS34725_ENABLE_AIEN (0x10) /**< RGBC Interrupt Enable */
#define TCS34725_ENABLE_WEN \
(0x08) /**< Wait Enable - Writing 1 activates the wait timer */
#define TCS34725_ENABLE_AEN \
(0x02) /**< RGBC Enable - Writing 1 actives the ADC, 0 disables it */
#define TCS34725_ENABLE_PON \
(0x01) /**< Power on - Writing 1 activates the internal oscillator, 0 \
disables it */
#define TCS34725_ATIME (0x01) /**< Integration time */
#define TCS34725_WTIME \
(0x03) /**< Wait time (if TCS34725_ENABLE_WEN is asserted) */
#define TCS34725_WTIME_2_4MS (0xFF) /**< WLONG0 = 2.4ms WLONG1 = 0.029s */
#define TCS34725_WTIME_204MS (0xAB) /**< WLONG0 = 204ms WLONG1 = 2.45s */
#define TCS34725_WTIME_614MS (0x00) /**< WLONG0 = 614ms WLONG1 = 7.4s */
#define TCS34725_AILTL \
(0x04) /**< Clear channel lower interrupt threshold (lower byte) */
#define TCS34725_AILTH \
(0x05) /**< Clear channel lower interrupt threshold (higher byte) */
#define TCS34725_AIHTL \
(0x06) /**< Clear channel upper interrupt threshold (lower byte) */
#define TCS34725_AIHTH \
(0x07) /**< Clear channel upper interrupt threshold (higher byte) */
#define TCS34725_PERS \
(0x0C) /**< Persistence register - basic SW filtering mechanism for \
interrupts */
#define TCS34725_PERS_NONE \
(0b0000) /**< Every RGBC cycle generates an interrupt */
#define TCS34725_PERS_1_CYCLE \
(0b0001) /**< 1 clean channel value outside threshold range generates an \
interrupt */
#define TCS34725_PERS_2_CYCLE \
(0b0010) /**< 2 clean channel values outside threshold range generates an \
interrupt */
#define TCS34725_PERS_3_CYCLE \
(0b0011) /**< 3 clean channel values outside threshold range generates an \
interrupt */
#define TCS34725_PERS_5_CYCLE \
(0b0100) /**< 5 clean channel values outside threshold range generates an \
interrupt */
#define TCS34725_PERS_10_CYCLE \
(0b0101) /**< 10 clean channel values outside threshold range generates an \
interrupt*/
#define TCS34725_PERS_15_CYCLE \
(0b0110) /**< 15 clean channel values outside threshold range generates an \
interrupt*/
#define TCS34725_PERS_20_CYCLE \
(0b0111) /**< 20 clean channel values outside threshold range generates an \
interrupt*/
#define TCS34725_PERS_25_CYCLE \
(0b1000) /**< 25 clean channel values outside threshold range generates an \
interrupt*/
#define TCS34725_PERS_30_CYCLE \
(0b1001) /**< 30 clean channel values outside threshold range generates an \
interrupt*/
#define TCS34725_PERS_35_CYCLE \
(0b1010) /**< 35 clean channel values outside threshold range generates an \
interrupt*/
#define TCS34725_PERS_40_CYCLE \
(0b1011) /**< 40 clean channel values outside threshold range generates an \
interrupt*/
#define TCS34725_PERS_45_CYCLE \
(0b1100) /**< 45 clean channel values outside threshold range generates an \
interrupt*/
#define TCS34725_PERS_50_CYCLE \
(0b1101) /**< 50 clean channel values outside threshold range generates an \
interrupt*/
#define TCS34725_PERS_55_CYCLE \
(0b1110) /**< 55 clean channel values outside threshold range generates an \
interrupt*/
#define TCS34725_PERS_60_CYCLE \
(0b1111) /**< 60 clean channel values outside threshold range generates an \
interrupt*/
#define TCS34725_CONFIG (0x0D) /**< Configuration **/
#define TCS34725_CONFIG_WLONG \
(0x02) /**< Choose between short and long (12x) wait times via \
TCS34725_WTIME */
#define TCS34725_CONTROL (0x0F) /**< Set the gain level for the sensor */
#define TCS34725_ID \
(0x12) /**< 0x44 = TCS34721/TCS34725, 0x4D = TCS34723/TCS34727 */
#define TCS34725_STATUS (0x13) /**< Device status **/
#define TCS34725_STATUS_AINT (0x10) /**< RGBC Clean channel interrupt */
#define TCS34725_STATUS_AVALID \
(0x01) /**< Indicates that the RGBC channels have completed an integration \
cycle */
#define TCS34725_CDATAL (0x14) /**< Clear channel data low byte */
#define TCS34725_CDATAH (0x15) /**< Clear channel data high byte */
#define TCS34725_RDATAL (0x16) /**< Red channel data low byte */
#define TCS34725_RDATAH (0x17) /**< Red channel data high byte */
#define TCS34725_GDATAL (0x18) /**< Green channel data low byte */
#define TCS34725_GDATAH (0x19) /**< Green channel data high byte */
#define TCS34725_BDATAL (0x1A) /**< Blue channel data low byte */
#define TCS34725_BDATAH (0x1B) /**< Blue channel data high byte */
/** Integration time settings for TCS34725 */
typedef enum {
TCS34725_INTEGRATIONTIME_2_4MS =
0xFF, /**< 2.4ms - 1 cycle - Max Count: 1024 */
TCS34725_INTEGRATIONTIME_24MS =
0xF6, /**< 24ms - 10 cycles - Max Count: 10240 */
TCS34725_INTEGRATIONTIME_50MS =
0xEB, /**< 50ms - 20 cycles - Max Count: 20480 */
TCS34725_INTEGRATIONTIME_101MS =
0xD5, /**< 101ms - 42 cycles - Max Count: 43008 */
TCS34725_INTEGRATIONTIME_154MS =
0xC0, /**< 154ms - 64 cycles - Max Count: 65535 */
TCS34725_INTEGRATIONTIME_700MS =
0x00 /**< 700ms - 256 cycles - Max Count: 65535 */
} tcs34725IntegrationTime_t;
/** Gain settings for TCS34725 */
typedef enum {
TCS34725_GAIN_1X = 0x00, /**< No gain */
TCS34725_GAIN_4X = 0x01, /**< 4x gain */
TCS34725_GAIN_16X = 0x02, /**< 16x gain */
TCS34725_GAIN_60X = 0x03 /**< 60x gain */
} tcs34725Gain_t;
/*!
* @brief Class that stores state and functions for interacting with
* TCS34725 Color Sensor
*/
class Adafruit_TCS34725_Soft {
public:
Adafruit_TCS34725_Soft(tcs34725IntegrationTime_t = TCS34725_INTEGRATIONTIME_2_4MS,
tcs34725Gain_t = TCS34725_GAIN_1X);
boolean begin(uint8_t addr, SoftwareWire *theWire);
boolean init();
void setIntegrationTime(tcs34725IntegrationTime_t it);
void setGain(tcs34725Gain_t gain);
void getRawData(uint16_t *r, uint16_t *g, uint16_t *b, uint16_t *c);
void getRGB(float *r, float *g, float *b);
void getRawDataOneShot(uint16_t *r, uint16_t *g, uint16_t *b, uint16_t *c);
uint16_t calculateColorTemperature(uint16_t r, uint16_t g, uint16_t b);
uint16_t calculateColorTemperature_dn40(uint16_t r, uint16_t g, uint16_t b,
uint16_t c);
uint16_t calculateLux(uint16_t r, uint16_t g, uint16_t b);
void write8(uint8_t reg, uint32_t value);
uint8_t read8(uint8_t reg);
uint16_t read16(uint8_t reg);
void setInterrupt(boolean flag);
void clearInterrupt();
void setIntLimits(uint16_t l, uint16_t h);
void enable();
void disable();
private:
SoftwareWire *_wire;
uint8_t _i2caddr;
boolean _tcs34725Initialised;
tcs34725Gain_t _tcs34725Gain;
tcs34725IntegrationTime_t _tcs34725IntegrationTime;
};
#endif